MOD	EL-9801, 98	03, 980	4 用 FFT 解析ソフト
	MODEL-9	9803-90	(Ver. 7. 00)
		取扱説	明書
0-783L (1/24)			SHOWA SOKKI 昭和測器株式会社

1. 概要

MODEL-9803-90 は、レコーダ MODEL-9801、9803、9804(以下、レコーダ)の測定データを、Microsoft EXCEL に読み込んで、波形表示、周波数解析、1/3 オクターブ解析、エンベロープ解析をして、解析後のグラフを表示するソフトです。

[注記]

Microsoft EXCEL、Windows は米国 Microsoft Corporation の米国およびその他の国における登録商標です。

2. 仕様

必要システム

ハードウェア仕様

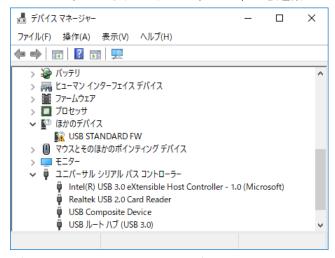
	USB	USB ポートに空きが 1 つあること				
`	ソフトウェア仕様					

0S	Windows 11 64bit, Windows 10 64bit/32bit
Office	Microsoft Excel 2019(64bit), Excel 2016(64bit/32bit),
	Excel 2013(32bit)

MODEL-9803-90 仕様

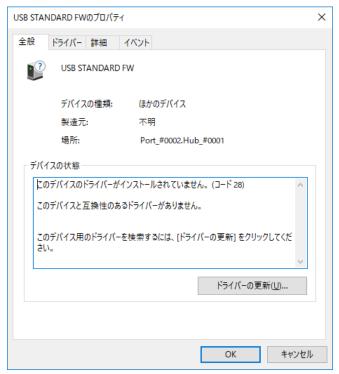
最大読込可能データ数	1,048,575 データ
読込可能ファイル形式	MODEL-9801、9803、9804 にて保存されたバイナリデータ
	(測定機能をメモリレコーダにして記録された
	バイナリデータ:*.memに対応)
最大波形化データ数	時間軸波形 :1,048,575 データ
取八仮形にたう数	周波数軸波形: 131,072 データ
FFT 演算データ数	256~131,072 データ
ウィンドウ処理	レクタンギュラ、ハニング
その他	測定データ内の任意の区間にて、
	時間軸波形、周波数解析、
	1/3 オクターブ解析、エンベロープ解析が可能

0-783L		SHOWA SOKKI 昭和測器株式会社
(2/24)		ジHOWA SORKI DE NO / RU 本本天 会 小I


- 3. インストール
- 3.1. デバイスドライバーのインストール

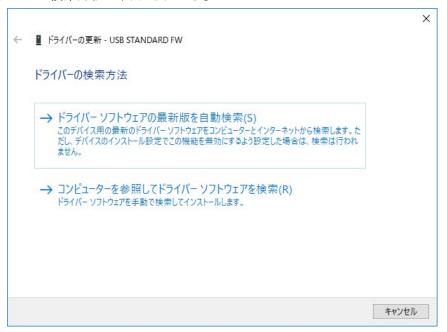
付属の CD-ROM を CD ドライブに入れ、付属の USB デバイスを接続してください。

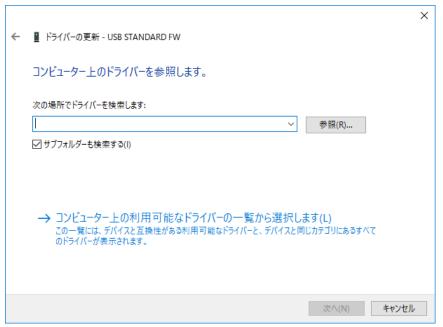
USB デバイスに緑 LED が点灯しない場合は、3.2 項を実施してください。


3.2. デバイスドライバーの更新

コントロールパネルからデバイスマネージャーを起動してください。

ほかのデバイスに、記号 Δ と不明なデバイス、または、USB STANDARD FW、または、PCGUARD が表示されています。

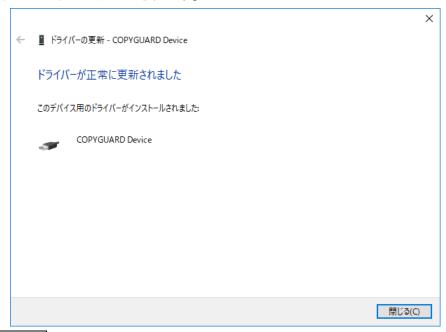

該当のものを選択し、マウス右クリックからプロパティを選択してください。


ドライバーの更新をクリックしてください。

0-783L (3/24)

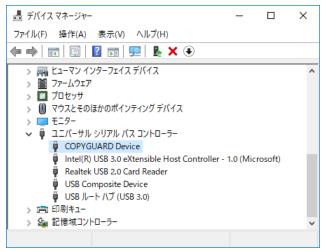
ドライバーの検索方法が表示されます。

「コンピュータを参照してドライバーソフトウェアを検索」を選択してください。



参照(R) をクリックして、CD ドライブを選択してください。

32bit OS の場合は、driver¥i386 までを選択してください。


| 次へ(N) |をクリックしてください。

ドライバーがインストールされます。

閉じる(C) をクリックしてください。

デバイスマネージャー上では、「ユニバーサル シリアル バス コントローラー」に、COPYGUARD Device、または、USB Chaos Device が表示されます。

USB デバイスの緑 LED が点灯します。

これでデバイスドライバーのインストールが終了しました。 引き続きソフトウェア MODEL-9803-90 をインストールしてください。

0-783L	
(5/24)	

3. 3. MODEL-9803-90 のインストール

付属の CD-ROM 内の\{setup\{Setup_9803-90.msi を実行してください。

セットアップウィザード画面が表示されます。 次へ(N)> をクリックしてください。

ソフトウェアの使用許諾契約が表示されます。

よくお読みになった上で、使用許諾契約の条項に同意される場合には、

「同意する」を選択して、「次へ」をクリックしてください。

使用許諾契約に同意されない場合は、インストールができません。

0-783L

(6/24)

インストールするフォルダを設定します。 次へ(N)> をクリックしてください。 フォルダを変更する場合は、 参照(R) ボタンより選択します。

インストールの確認画面が表示されます。 次へ(N)> をクリックしてください。

0-783L

(7/24)

インストール完了の画面が表示されます。 閉じる(C) をクリックしてください。

USB ポートに付属の USB デバイスを、取り付けた後に、デスクトップ上のショートカット、または、スタートのプログラム内より、MODEL-9803-90 を、クリックすることで、ソフトウェアが起動します。

[注意]

付属の USB デバイスを、取り付けないと、ソフトウェアが正常に、使用できません。

[9803-90 のアンインストール]

9803-90 を、アンインストールする時は、コントロールパネルから、プログラムと機能を、 選択します。

プログラムのアンインストールまたは変更の画面上で、"MODEL-9803-90"を、選択して、アンインストールします。

0-783L

(8/24)

4. レコーダの基本事項

測定を行う前に下記の内容を理解してお使いください。

4.1. 時間軸レンジ*

時間軸レンジとは、横軸の1目盛(1マス)を何秒に設定するかということです。

* レコーダを起動後に 設定 を1回押すと、基本設定画面になり設定が出来ます。

4.2. サンプリング間隔*

サンプリング間隔とは、データを取得する時間間隔です。従って、測定信号はこの時間間隔 でデジタル化されます。

MODEL-9801 の場合

1 目盛のサンプリング回数は 100 回/div なので、サンプリング間隔は、時間軸レンジを、100 で、除算した時間となります。

MODEL-9803、9804 の場合

1 目盛のサンプリング回数は80回/divなので、サンプリング間隔は、時間軸レンジを、80で、除算した時間となります。

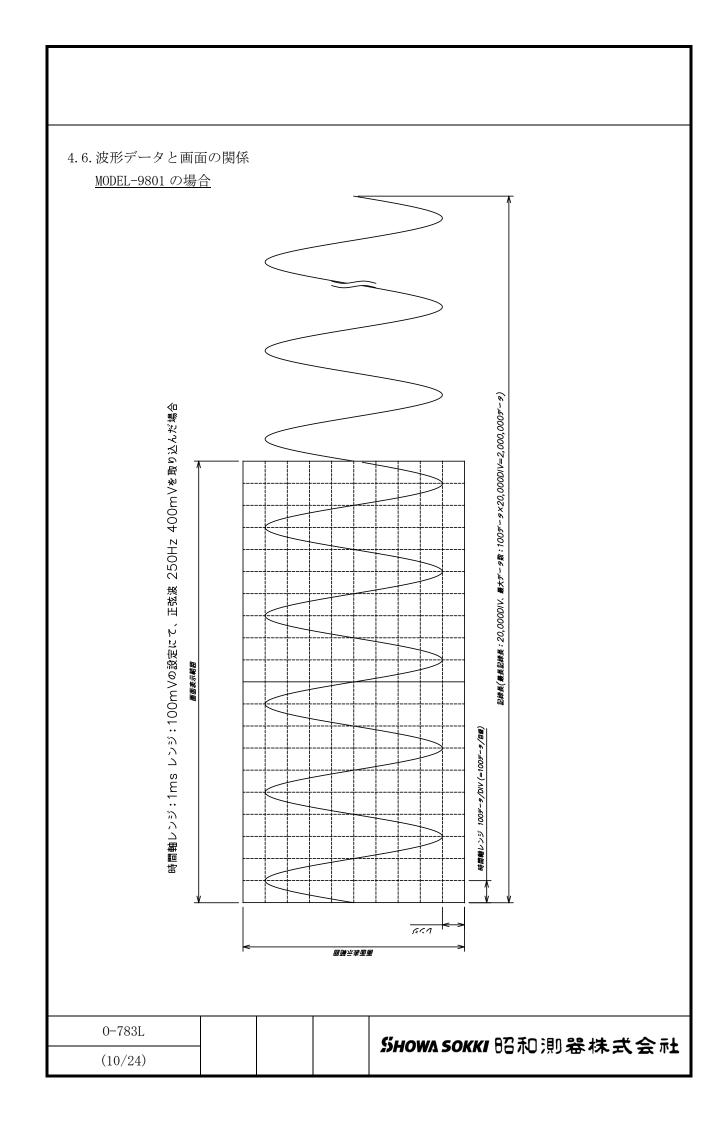
4.3. 記録長*

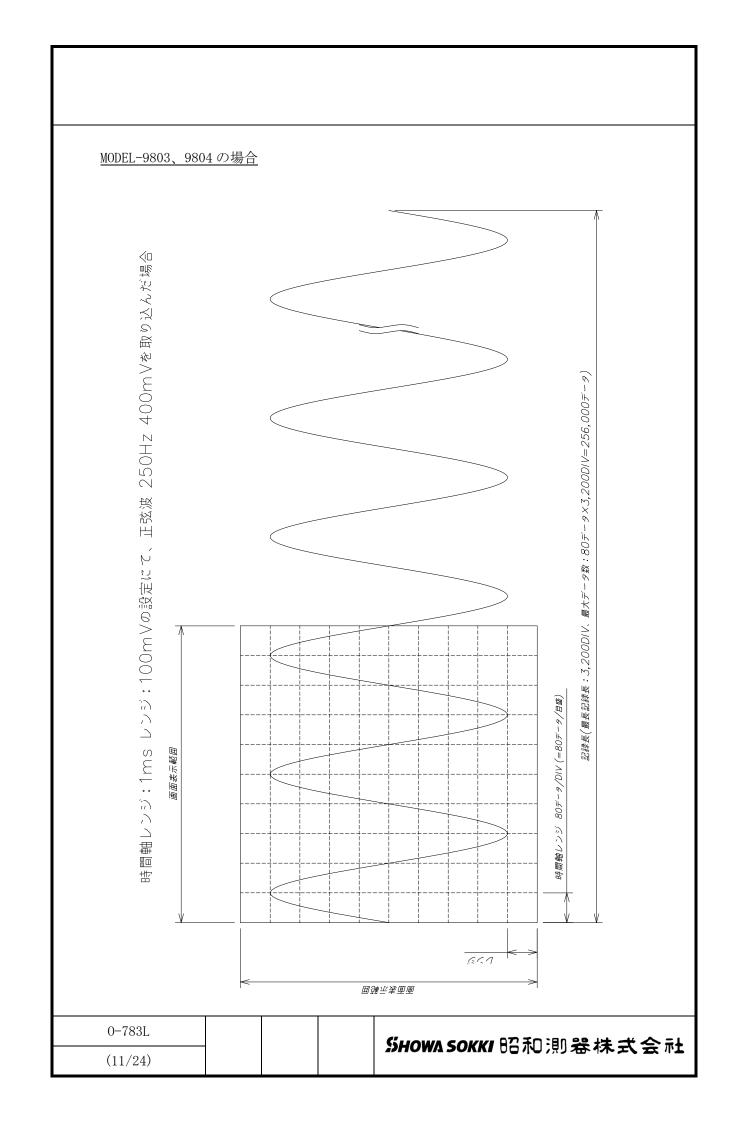
記録長とは、データを何目盛記録するかということです。

4.4. 記録時間 *

記録時間とは、記録長で設定された目盛数と時間軸レンジにより決まる値で、実際に測定できる時間の長さです。時間軸レンジと記録長の掛算と同じになります。

4.5.波形表示画面


MODEL-9801 の場合


波形が表示されていない画面においては、<u>波形/数値</u>を 1 回押すことで、波形表示画面になります。この画面では、記録されたデータの最初から 20 目盛迄が表示されます。 20 目盛以降のデータは、スクロール ボタンを押して表示位置を替えてください。

MODEL-9803、9804 の場合

波形が表示されていない画面においては、<u>波形表示</u>を1回押すことで、波形表示画面になります。この画面では、記録されたデータの最初から10目盛迄が表示されます。 10目盛以降のデータは、スクロール ボタンを押して表示位置を替えてください。

0-783L		SHOWA SOKKI 昭和測器株式会社
(9/24)		



5. レコーダの測定用設定ファイル

MODEL-9801 の場合

メモリカード(別売)には下記の構成にて、レコーダの設定用ファイルが含まれています。 それぞれの目的に合わせて使用してください。(MODEL-9803、9804 には使用出来ません。)

フォルダ名	ファイル名	用途
1332B	ACC. SET	1332B にて加速度測定を行う時に使用
	VEL. SET	1332B にて速度測定を行う時に使用
	DISP. SET	1332B にて変位測定を行う時に使用
1340A	ACC. SET	1340A にて衝撃等の測定を行う時に使用

主な設定内容

1332B¥ACC. SET 測定チャネル番号:1、時間軸レンジ:2ms(サンプリング間隔:20 μ s)、

記録長:5,00DIV(記録時間:10s)、レンジ:500mV(最大測定電圧:±2.5V)、

スケーリング:10mV→1m/s²Peak

1332B¥VEL. SET 測定チャネル番号:1、時間軸レンジ:2ms(サンプリング間隔:20 μ s)、

記録長:5,000DIV(記録時間:10s)、レンジ:500mV(最大測定電圧:±2.5V)、

スケーリング:10mV→1m/s_{RMS}

1332B¥DISP. SET 測定チャネル番号:1、時間軸レンジ:2ms(サンプリング間隔:20 μ s)

記録長:5,000DIV(記録時間:10s)、レンジ:500mV(最大測定電圧:±2.5V)、

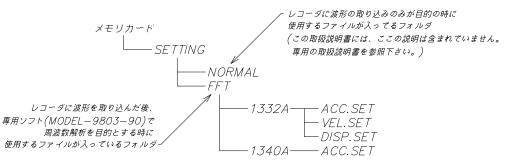
スケーリング:1V→1mm_{P-P}

1340A¥ACC. SET 測定チャネル番号:1、時間軸レンジ:200 μ s(サンプリング間隔:2 μ s)、

記録長:5,000DIV(記録時間:1s)、レンジ:500mV(最大測定電圧:±2.5V)、

スケーリング: $1mV \rightarrow 1m/s^{2}_{Peak}$ 、

トリガモード:単発、レベル:12.5mV(12.5m/s²_{Peak}相当)、スロープ:↑


プリトリガ:10%

0-783L		SHOWA SOKKI 昭和測器株式会社
(12/24)		SHUMA SURKI DENU , 即 本水 大 云 川

レコーダの測定用設定ファイル

MODEL-9803、9804 の場合

メモリカード(別売)には下記の構成にて、レコーダの設定用ファイルが含まれています。 それぞれの目的に合わせて使用してください。(MODEL-9801 には使用できません。)

フォルダ名	ファイル名	用途
1332A	ACC. SET	1332A にて加速度測定を行う時に使用
	VEL. SET	1332A にて速度測定を行う時に使用
	DISP. SET	1332A にて変位測定を行う時に使用
1340A	ACC. SET	1340A にて衝撃等の測定を行う時に使用

主な設定内容

1332A¥ACC. SET 測定チャネル番号:1、時間軸レンジ:2ms(サンプリング間隔:25 μs)、

記録長:3,200DIV(記録時間:6.4s)、レンジ:500mV(最大測定電圧:±2.5V)、

スケーリング:10mV→1m/s²Peak

1332A¥VEL. SET 測定チャネル番号:1、時間軸レンジ:2ms(サンプリング間隔:25 μ s)、

記録長:3,200DIV(記録時間:6.4s)、レンジ:500mV(最大測定電圧:±2.5V)、

スケーリング:10mV→1m/s_{RMS}

1332A¥DISP. SET 測定チャネル番号:1、時間軸レンジ:2ms(サンプリング間隔:25 μ s)

記録長: 3,200DIV(記録時間: 6.4s)、レンジ: 500mV(最大測定電圧: ±2.5V)、

スケーリング:1V→1mm_{P-P}

1340A¥ACC. SET 測定チャネル番号:1、時間軸レンジ:200 μ s(サンプリング間隔:2.5 μ s)、

記録長:3,200DIV(記録時間:6.4s)、レンジ:500mV(最大測定電圧:±2.5V)、

スケーリング: $1mV \rightarrow 1m/s^{2}_{Peak}$ 、

トリガモード: 単発、レベル: 12.5mV(12.5m/s²_{Peak}相当)、スロープ:↑

プリトリガ:10%

0-783L		SHOWA SOKKI 昭和測器株式会社
(13/24)		DHOMA SURVING NO RU 本体的 A ME

6. 操作説明

簡単に、波形を取り込んで、周波数解析をする手順を、下記に示します。

レコーダ起動

レコーダの本体手前側にある電源を、入れて起動させます。

設定ファイル読み込み

メモリカード(別売)がある場合は、メモリカード内のファイルを測定内容に合わせて読み込んでください。

メモリカード(別売)がない場合は、測定内容に合わせて時間軸レンジ、電圧レンジ等を設定してください。

レコーダへの波形記録

レコーダの測定機能をメモリにしてください。

(他の測定機能にて測定されたデータでは、MODEL-9803-90 では読み込めません。) 記録したい波形を入力して 開始 を押すと本体メモリに波形が記録されます。 本体メモリに記録された波形は 停止 を押して記録を停止させた後に

メモリカードへの波形保存

本体メモリに記録されている波形を、メモリカードに保存にします。 メモリカードに保存する場合に、ファイル形式をバイナリにして保存してください。 ファイル形式をテキストにすると、レコーダでは読み込めなくなります。

メモリカード取り外し

レコーダの電源を切った後、メモリカードを取り外してください。

[注意]

電源を切らずにメモリカードを取り外すと、レコーダ及びメモリカードが破損する 恐れがありますので注意してください。

パソコンへのメモリカード取り付け

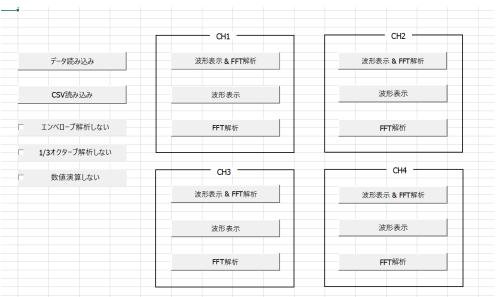
メモリカードを、MODEL-9803-90 がインストールされているパソコンの PCMCIA ポートに、入れてください。

0-783L		SHOWA SOKKI 昭和測器株式会社
(14/24)		SHOWA SORKI DE NO RU 本外天 女 小

MODEL-9803-90 起動

USB ポートに、付属の USB デバイスを、取り付け、スタートのプログラム内の MODEL-9803-90 を、クリックすることで、ソフトウェアが起動します。

付属の USB デバイスが、接続されていないと、MODEL-9803-90 は、使用できません。 MODEL-9803-90 は、マクロを含んでいるため、セキュリティ警告が、表示されます。


コンテンツの有効化 、または、マクロを有効にする を、クリックしてください。

|マクロを無効にする |を選ぶと、MODEL-9803-90 は、使用できません。

起動時に、セキュリティ警告が表示されない場合は、EXCELのセキュリティレベルの設定を、 "中"にしてください。

セキュリティレベルの設定方法は、EXCEL のバージョンで、異なりますので、各 EXCEL のヘルプファイルを、参照してください。

MODEL-9803-90 が起動すると、下記のような画面が、表示されます。

[注意]

MODEL-9803-90 のシートは、削除したり、追加したり、移動したりしないでください。 正常に使えなくなります。

[注意]

MODEL-9803-90 を保存したい場合は、"上書き保存"をしないで、"名前を付けて保存"(別名で保存)をしてください。

[ヒント]

"名前を付けて保存"をする時にファイル名を測定箇所や測定条件等にすると、後から 検索をする時に検索が容易になります。

0-783L		SHOWA SOKKI 昭和測器株式会社
(15/24)		SHOWA SURKI DENU RU 在外天女儿

データ読み込み

"操作"シート上の左端にある データ読み込み をクリックして、メモリカード等より 周波数解析を行いたいバイナリファイルを選択してください。

進行状況を表すダイアログが表示されますので、読み込みが完了するまでお待ちください。

[ヒント]

読み込むファイルサイズやパソコンの性能等に依存しますが、 ファイルを読み込んだ後の EXCEL へのデータ転記には時間がかかる場合があります。 データ読み込みが完了した後は、

別のディレクトリ等に"名前を付けて保存"(別名で保存)することで、読み込んだデータも含めて保存ができます。

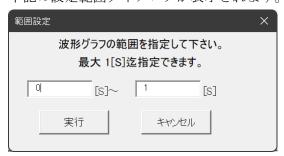
別名で保存されたファイルを使用することで、後日作業の続きをしたい場合等において、 再度同じバイナリファイルを読み込む手間が省けます。

データ読み込み後のデータ確認

"設定"シート及び波形データがあるチャネルの時間軸波形シートにデータが 転記されています。

CSV 読み込み は、テキスト形式で保存したファイルを、読み込むことができます。

0-783L


SHOWA SOKKI 昭和測器株式会社

(16/24)

波形表示

"操作"シート上の各チャネル欄の中央部にある<u>波形表示</u>をクリックすると、 対応するチャネルのデータの波形表示を行います。

クリック後に、下記の設定範囲ダイアログが表示されます。

このダイアログ内の左側の欄に、波形を表示したい区間の開始時間を、右側の欄に、終了時間を入力します

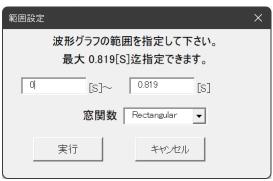
実行 をクリックすると、開始時間と終了時間の時間軸波形グラフを、対応するチャネルの時間軸波形シート上に、表示します。

終了時間は、読み込んだデータの最大値に、制限されます。

開始時間に、数値を入力すると、終了時間に、波形表示ができる最大の終了時間が、反映されます。

[ヒント]

選択範囲を、最大終了時間で、波形表示させることで、長時間の波形データを、グラフ化 することができますが、波形によっては、表示が見づらくなることもあります。


その場合は、作図されたグラフの X 軸目盛の最大値と最小値を、必要な区間のみにするか、 予め設定範囲で、波形表示区間を、必要な区間のみにするなどしてください。

0-783L (17/24)

FFT 解析

"操作"シート上の各チャネル欄の下部にある FFT 解析 を、クリックすると、対応するチャネルのデータを、FFT 解析します。

クリック後に、下記の設定範囲ダイアログが、表示されます。

波形表示と同様に、開始時間と終了時間を、入力してください。

開始時間に、半角の数字を入力すると、終了時間に、FFT 演算できる最大の終了時間が、反映されます。

窓関数を、選択してください。

「参考:窓関数について]

Rectangular(レクタンギュラ)は、衝突、打撃波形のように、開始時間と終了時間で、信号の大きさが、ゼロとなるような波形に用いることが、理想的です。

Hannig(ハニング)は、連続波形のように、開始時間と終了時間で、信号の大きさが、ゼロにならない波形に用いることが、理想的です。

| 実行 |をクリックすると対応するチャネルの周波数軸波形シートに、

FFT(高速フーリエ変換:Fast Fourier Transform)の演算結果と波形を表示します。

また、グラフ内上部には最大5点までのピークリストが表示されます。

開始時間や終了時間が、波形データの記録時間に存在しない場合、開始時間は、設定値より小さい記録時間を、終了時間は、設定値より大きい記録時間を含み、FFT 演算データ数内の2の指数乗となる終了時間で、FFT 演算します。

例えば、サンプリング間隔が 1s の時は、データは、0s、1s、2s、…となります。

ここで、開始時間に、1.5sを設定すると、開始時間は、1sとなります。

終了時刻に、256.5 を設定すると、終了時間は、257s を含み、FFT 演算データ数内の 2 の指数乗から、512 データの 512s となります。

[参考:時間軸波形と周波数軸波形の関係]

サンプリング間隔により、周波数解析が可能な周波数の上限(周波数レンジ)が決まります。

周波数レンジ =
$$\frac{1}{2} \times \frac{1}{\psi \mathcal{V} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}}$$
 ÷ 1.28

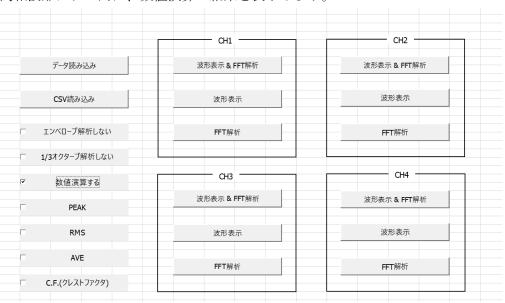
サンプリング間隔と FFT 演算のデータ数(2の指数乗)により、周波数分解能が決まります。

従って、最大の選択範囲で周波数解析すると、分解能を細かくできますが、必要以上に細かくすると、周波数軸波形が見づらくなることがありますので、注意してください。 ※データ数は、256~131,072 内の 2 の指数乗となります。

波形表示 & FFT 解析

"設定"シート上の各チャネル欄の上部にある 波形表示&FFT 解析 を、クリックすると、FFT 解析の時と同じダイアログが表示されます。

同様に、開始時間と終了時間を、入力して、窓関数を、選択してください。


実行をクリックすると、各チャネルに対応した周波数軸波形シートに、時間軸波形と FFT 演算の結果、及び、周波数軸波形を表示します。

0-783L

(19/24)

数值演算

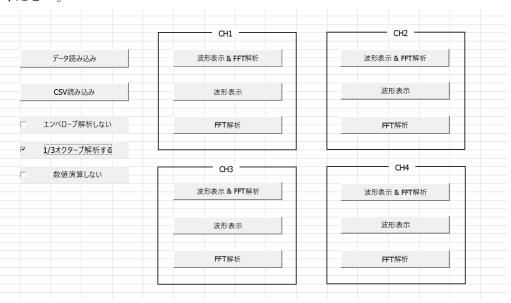
「数値演算しない」に、チェックを入れて、「数値演算する」にしてから、波形表示すると、 時間軸波形グラフ内に、数値演算の結果を表示します。

表示したい下記の項目に、チェックを入れます。

PEAK : 時間軸波形の絶対値の最大値を、表示します。

RMS:時間軸波形の実効値を、表示します。

AVE: : 時間軸波形の絶対値の平均値を、表示します。


C.F. (クレストファクタ) : クレストファクタを、表示します。

0-783L

(20/24)

1/3 オクターブ解析

1/3 オクターブ解析する時は、「FFT 解析」、または、「波形表示 & FFT 解析」をする前に、 1/3 オクターブ解析のチェックボックスにチェックを入れて、「1/3 オクターブ解析する」に してください。

推奨の測定条件

サンプリング間隔:20us (50us 以下)

測定時間 : 3s 以上 (データ数:131072 以上)

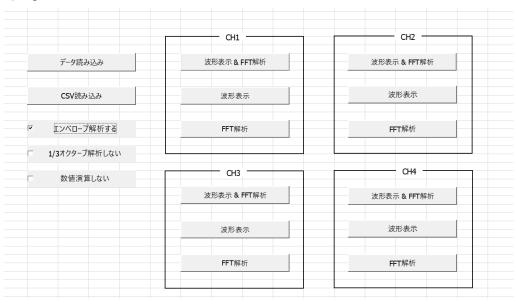
MODEL-9801 の場合

時間軸レンジ: 2ms/div (サンプリング間隔: 20us)

記録長 : 2000div

MODEL-9803、9804 の場合

時間軸レンジ: 2ms/div (サンプリング間隔: 25us)


記録長 : 2000div

0-783L

(21/24)

エンベロープ解析

エンベロープ解析する時は、「FFT 解析」、または、「波形表示 & FFT 解析」をする前に、エンベロープ解析のチェックボックスにチェックを入れて、「エンベロープ解析する」にしてください。

推奨の測定条件

サンプリング間隔:20us (50us 以下)

測定時間 : 3s 以上 (データ数:131072 以上)

MODEL-9801 の場合

時間軸レンジ: 2ms/div (サンプリング間隔: 20us)

記録長 : 2000div

MODEL-9803、9804 の場合

時間軸レンジ: 2ms/div (サンプリング間隔: 25us)

記録長 : 2000div

0-783L

(22/24)

7. 巻末資料(MODEL-9801 の場合)

下記にサンプリング時間とデータ数による周波数レンジと周波数分解能の値を示します。周波数レンジ及び周波数分解能の値は四捨五入してあります。

(チャンネル数=1、時間軸データ数=2,000,000)

サンプリング時間	最大記録長	周波数レンジ	周波数分解能
1μ秒	2 秒	390. 625kHz	61.035Hz
2μ秒	4 秒	195. 313kHz	30.518Hz
5μ秒	10 秒	78. 125kHz	12. 207Hz
10μ秒	20 秒	39. 063kHz	6. 104Hz
20μ秒	40 秒	19. 531kHz	3.052Hz
50μ秒	1分40秒	7.813kHz	1.221Hz
100μ秒	3分20秒	3. 906kHz	610.352mHz
200μ秒	6分40秒	1. 953kHz	305.176mHz
500μ秒	16分40秒	781. 25Hz	122.070mHz
1m 秒	33分20秒	390.63Hz	61.035mHz
2m 秒	1 時間 6 分 40 秒	195. 31Hz	30.518mHz
5m 秒	2 時間 46 分 40 秒	78. 13Hz	12.207mHz
10m 秒	5 時間 33 分 20 秒	39.06Hz	6.104mHz
20m 秒	11 時間 6 分 40 秒	19. 53Hz	3.052mHz
50m 秒	1日3時間46分40秒	7.81Hz	1.221mHz
100m 秒	2日7時間33分20秒	3. 91Hz	610. 352 μ Hz
300m 秒	6 日 22 時間 40 分	1.95Hz	305. 176 μ Hz
1秒	13 日 21 時間 20 分	781mHz	122.070μ Hz
2 秒	27 日 18 時間 40 分	391mHz	61. 035 μ Hz
5秒	69 日 10 時間 40 分	78mHz	30. 518 μ Hz

0-783L		SHOWA SOKKI 昭和測器株式会社
(23/24)		DHUMA SURKI DE NU , 別 本休氏 云 NI

巻末資料 (MODEL-9803、9804 の場合)

下記にサンプリング時間とデータ数による周波数レンジと周波数分解能の値を示します。周波数レンジ及び周波数分解能の値は四捨五入してあります。

(チャンネル数=1、時間軸データ数=256,000)

サンプリング時間	最大記録長	周波数レンジ	周波数分解能
2.5μ秒	640m 秒	156. 250kHz	24. 414Hz
5μ秒	1.28 秒	78. 125kHz	12. 207Hz
12.5μ秒	3.2秒	31.250kHz	4.883Hz
25μ秒	6.4秒	15.625kHz	2.442Hz
62.5μ秒	16 秒	6. 250kHz	976.563mHz
125μ秒	32 秒	3. 125kHz	488.281mHz
250μ秒	1分4秒	1.563kHz	244.141mHz
625 μ 秒	2分40秒	625Hz	97.656mHz
1.25m 秒	5分20秒	312. 5Hz	48.828mHz
2.5m 秒	10分40秒	156.25Hz	24.414mHz
6.25m 秒	26分40秒	62. 5Hz	9.766mHz
12.5m 秒	53分20秒	31.25Hz	4.883mHz
25m 秒	1 時間 46 分 40 秒	15. 625Hz	2.441mHz
62.5m 秒	4 時間 26 分 40 秒	6.25Hz	976. 563 μ Hz
125m 秒	8 時間 53 分 20 秒	3. 125Hz	488. 281 μ Hz
375m 秒	1日2時間40分	1.042Hz	162. 761 μ Hz
750m 秒	2日5時間20分	521mHz	81. 380 μ Hz
1.5秒	4 日 10 時間 40 分	260mHz	$40.690\mu\mathrm{Hz}$
3.75 秒	11 日 2 時間 40 分	104mHz	$16.276\mu\mathrm{Hz}$

チャネル数が 2 の時は、1 チャネル当たり時間軸データ数が半分の 128,000 になりますので、最大記録長の値が半分になり、周波数分解能の値が 2 倍になります。

0-	-783	ßL